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Generation and Detection of Propagating 
in Shearing Liquid Crystals I 

Lin Lei, 2 Shu Changqing, 3 and Xu Gang 3 

Solitons 

Different methods of generating and detecting propagating solitons in uniform 
and nonuniform, steady and unsteady shearing nematic liquid crystals are 
proposed, reviewed, and discussed in detail. These include the use of (1) an 
external plate moving uniformly in the middle and at one end of the liquid 
crystal (LC) cell, (2) a LC cell with one glass plate moving uniformly and rever- 
sing in direction, (3) an external plate as in (1) but moving periodically, (4) 
pressure gradients along the long axis of the LC cell, (5) circular LC cell with 
one glass plate rotating, and (6) circular LC cell with radial pressure gradients. 
In each of these cases, the relevant equations of motion of the LC molecules are 
derived and analyzed. In the essentially one-deminsional cases of (1) to (3), the 
governing equation is the damped, driven since-Gorden equation. Analytic and 
numerical results of single and multisolitons are presented. A multiscale pertur- 
bation method is used in the unsteady case of (4). The related case of "soliton 
switch" in ferroelectric smectic C* is discussed. 

KEY WORDS: Liquid crystal; soliton; shearing; sine-Gordon equation; mul- 
tiscale perturbation method; ferroelectric smectic C*. 

1. I N T R O D U C T I O N  

In  the o rdered  fluid of  l iqu id  crystals ,  because  of the s t r o n g  c o u p l i n g  of  the  
d i rec to r  n (a un i t  vec to r  r ep re sen t i ng  the  ave raged  local  o r i e n t a t i o n  of 
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molecules) with light, it is possible to observe the motion of the molecules 
and the solitons rather directly. (1'2) 

Early discussions on solitons ("walls") in liquid crystals were due to 
Helfrich,/3) deGennes, (4) Brochard,/5/ and Leger. (6) Subsequently, static 
solitonlike splay-bend distortions of nematics in a glass tube was discussed 
by Cladis and Kleman. (7~ In Couette flow of nematic HBAB and CBOOA 
(in the regime 7 > 1, see below) solitary waves were observed when "tum- 
bling" instability occurred. (8) Also, small solitary vortices were seen 
propagating in the subcritical region of electroconvective instability by 
Ribotta. (9) 

More recently, existence of static solitons ("discommensurations") in 
smectic A materials were proposed by Prost. (~~ Walls in smectic C* films 
and in nematics under electric field were treated by Pindak et al., (H) Clark 
and Lagerwall,(~2) and Carr and Kozlowski, (13) respectively. Condensation 
of solitons related to the transition between cholesteric and nematic phases 
in magnetic field was discussed by Yamashita et al. ~14) Kinks were used to 
explain the large increase of the. pitch in smectic C* near the smectic- 
C*-smectic-A transition. (15~ In smectic C* the transition between the two 
ferroelectric states with opposite polarization was observed to be mediated 
by solitary wave. (16) Walls in lyotropic nematics are discussed by Figuiredo 
Neto e t a / .  (17) In the zig-zag patterns observed in electroconvective 
instabilities of nematics, ~4 kinks are found. (~8) 

In this paper, the case of solitons in shearing nematics (~'2'19 21/is dis- 
cussed. It represents an effort to study systematically the propagation of 
solitons in liquid crystals. These solitons are simple, propagating, easily 
controlled, and readily observable (even by the naked eye). 

For completeness, we note that director waves have been linked to 
waves in biomembranches/22'23~ (see footnote 4 in Ref. 2). 4 

2. SOLITONS IN UNIFORM STEADY SHEARING NEMATICS 

2.1. Theory 

For nematics with velocity v = (v(y) ,  0, 0) and s = - Ov/Oy = const the 
equation for n = (sin 0, cos 0, 0), 0 =  O(x, t) is given by (1'2) the damped, 
driven sine-Gordon equation 

MO,f = K O x x - ~ l O f +  1s(~1 -72  cos 20) (1) 

or, in dimensionless form, 

ffIOTT= Oxx-- OT + OU/~O (2) 

4 See also S. Rowlands, J. Biol. Phys. 11:117 (1983). 
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Fig. 1. Molecular orientations in three possible single solitons of Eq. (2) or (4). Shown here 
are Ao, B0, and C types (see Table I for definitions). 

with U -  70 + �89 sin 20, M = M/(~71) (see Ref. 2 for notational definitions). 
For a traveling wave of velocity q(>0) ,  0 = O(X-  qT) ==- O(Z), (2) becomes 

mO'= -rlO - au/ao (3) 

For 7-=71/1721 < 1 the two steady uniform solutions of (2), 0 = 0 o  and 
0 = -00 ,  are stable and unstable, respectively [n/4 < 0 0 -  �89 c o s - l ( - 7 )  < 
n/2]. Solitons 5 are formed by connecting these two states (or their 
equivalents) in different ways (Fig. 1). As seen from (3), these correspond 

5 The word "soliton" used here and in Refs. 1, 2 and 19 is synonymous to "solitary wave" (or 
"propagating front"). 
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Fig. 2. Sketch of the fictitious potential U for 0 < 7 < 1. 
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Functional forms of the three types of solitons (A, B, and C). The solid curve of A(B) 
is Ao(Bo), the broken line is AI(BI). 

to a fictitious particle of mass m moving from a local maximum of U to its 
neighboring maximum or minimum (Figs. 2 and 3). There are four different 
types of single solitons (Table I). The case of q < 0  is obtained by 
interchanging the asymptotic values of that for t/> 0 (Fig. 4). They are the 
antisolitons (which travel with negative velocities only, in contrary to the 
sG case). 

Table I. Classification of Single Solitons (y < 1 )~ 

Type 

Mass m particle 

starts at ends at Condition of existence 

With or without 
oscillating 

tail 

A 

B 

A o 0o - 0 o  r /~<r/< f/ No 
A~ r/~ < ~/< r/~ Yes 

B 0 o (1/2)zr-  0o r/b ~ r /< f/ No 
0 < t / < t / b  Yes 

B~ 00 00 -- (1/2)zc 
C t /= t/c No 

0o 00 
D t / = 0  No 

a?~ = j ~  1/2. All t/'s are functions of y only. Upper and lower limits for qa, t/b, and t/c are 
available. (2~ 0 < t/c < 1.68. 
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Fig. 4. (a) Soliton Ao (or C). (b) Antisoliton A0 (or C). They always move in oppsite direc- 
tions. 

In nematics (e.g., MBBA), 3 ~  10 -11. The 0r r  term in (2) is important 
in a transient time T , , ,M  1/2 in the beginning only. (2~ Equation (2) is thus 
practically equivalent to 

Or = Ojcx + ~?U/O0 (4) 

which is a nonlinear diffusion equation (24) corresponding to the case of 
m = 1 in (3). The discussion above obviously applies to both (2) and (4). 

The C soliton is linearly stable. (24) Ao and Bo solitons are marginally 
stable (2s'26) (with respect to localized perturbation) which are physically 
relevant and observable. (2'2v) 

Analytic soliton solutions of (2) and (4) are available (2'19) for t#>> 1 
(and for Ao and Bo types only). Computer calculations have been done, 
e.g., in Refs 20 and 26. The collision and annihilation of a A.4 pair is shown 
in Fig. 5. (2~ In contrast to the sG case, they neither penetrate each other 
nor form a bound state (the breather) but end up as the stable state 0 = 00. 
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Fig. 5. 
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Annihilation of AA soliton pair. ~ = 0.96 (00 = 1.42). 
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The time evolution of multisolitons (which are not traveling waves) 
are also calculated. The cases of CCA and CCC are shown in Fig. 6. The 
local velocities q~ at 0 =kzc (k--0 ,  - 1 ,  - 2 )  are plotted in Fig. 7. At large 
T, we see that in the CCA case, t h tends to a value much larger than ~2 
(>~t) ,  while in CCC, all t h tend to a single value (at T >  6). This result 
may be understood as follows. In multisolitons, locally speaking, each part 
connecting two adjacent maxima will eventually (at T ~  oe) evolve into a 
C soliton (with velocity r/c ) and the part connecting a maximum and an 
adjacent minimum wll evolve into an Ao soliton (with velocity i? >~ qa > rio). 
For 7 = 0.96 and M = 0, ~/c = 1.32 and 1.50 < t L < 2.54. ~2~ These values and 
the results in Fig. 7 are consistent with the above picture. The above con- 
jucture of q~ --. tic at T--* oe for CCC is guaranteed by the theorems of Fife 
and M c L e o d  (29) which holds for (4) only. The corresponding theorems for 
(2) (Mr 0) and the case of CCA (with M =  0 or # 0 )  remain to be proved 
mathematically. 

Apart from Ref. 29, the relevant theorems governing the emergence of 
solitons from arbitrary semilocalized initial data O(X, 0) for the parabolic 
equation (4) are those of Aronson and Weinberger. (~~ When applied to 
(4), for localized O(X, 0) which is bounded in the region [bl ,  t], It, b], and 
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Fig. 6. Time evolution of two nultisolitons (solid line, CCA; broken line, CCC). The dots are 
at 0 =  -k~z, k = 0 ,  1, 2 (observable as dark lines under white light). 
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Fig. 7. Local velocity ~/i corresponding to the dots in Fig. 6. t/l and r/2 are the same for both 
CCA and CCC multisolitons, t/3 and t/3, correspond to CCA and CCC, respectively. 

I-t1, t]  (or equivalent ones obtained by a shift of a multiple of ~; see 
Fig. 1), respectively, the emerging soliton at T--* oo is one with unique 
velocity t/a, t/b, and r/c in each case (corresponding to the Ao and B 0 with 
minimal velocities and C, respectively). Note that, to our knowledge, there 
is no corresponding mathematical investigation of the hyperbolic 
equation (2). 

Numerical calculations on this problem has been carried out by 
us. (31'32/The results are relevant to the problem of pattern selection. (26) 

2.2. Experiments 

To generate the above solitons in nematics, one must (i) create and 
maintain a uniform steady shear, (ii) generate the solitons by some means, 
and (iii) supply energy continuously to keep the solitons propagating. 

One possible way to do this (33) is illustrated in Fig. 8. The pushing 
plate serves the purposes of (i) and (iii). (2) Point (ii) is less apparent. When 
the plate is being pushed some nematic must flow out of the cell in the 
opposite direction and a complicated (uncontrolled) initial state O(X, O) 
localized near the pushing plate is created. In our opinion, a multisoliton is 
generated resulting from the time evolution of this O(X, 0) and is what has 
been observed by Zhu. (33) This conclusion is supported by the following 
results. 
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Fig. 8. Sketch of experimental setup-of Ref, 33. The pushing plate (P) creates 12) a velocity 
profile (V) in the nematic sandwiched between two glass plates (G1 and G2). Incident light 
(LI) enters normally to the cell which is placed between two polarizes (P1 and P2, with 
polarization direction at 45 ~ to the long axis of the cell). The transmitted light (L2) is recor- 
ded by the camera (C). 

The ratio of the transmitted to the incident white=light intensities 
I(X, T)/Io is a function (~9) of sin s O(X, T). In Fig. 9, I/Io corresponding to 
O(X, T) of the CCA multisoliton of Fig. 6 is shown. (Similar results are 
obtained for the CCC multisoliton.) The three dark lines represent the ver- 
tical molecules (with O=kn). For each T, the width of the dark line 
increases with X. Also, the width of each dark line decreases with T. These 
are exactly the characteristics shown in Fig. 1 of Ref. 33. Since the observed 

~ T = I . 6  

01 v ~ u ~f "~ 
410.Z 1533.4. ZSO0.6 X 

'I 
4ZO 4Z6.6 4g?- 1551.8 2618.6 X 

Fig. 9. Calculated transmitted white-light intensity I at T =  1.6 (the upper one) and T =  5.4 
(the lower one) corresponding to the CCA multisoliton of Fig. 6. Same material parameters 
(for MBBA) as in Ref. 19 are used. 
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velocity of each dark line (t/i--~ 102-103) (2) is much larger than r/c and t/a we 
therefore identify (2) each dark line as an A0 soliton (in the sense that each 
separated part of a multisoliton can be closely represented by a single 
soliton as in, e.g., the sG case). Note that the B soliton contains no vertical 
molecules and hence no dark line under white light. They cannot be obser- 
ved with the set up of Ref. 33. 

It should be pointed out that the deduction of O(X, T) from I(X, T) is 
not unique. For  fixed T, the transmitted monochromaticlight pattern 
I(X, T) consists of a series of dark lines. (2'19) For  each such I(X) with m 
major dark lines (i.e., those with 0 = ks, k = integer, and show up as dark 
lines under white light) it can be proved (31) that there are 2 m- 1 different 
O(X, T) corresponding to it. One can narrow this choice by noting the signs 
of the velocities of the major dark lines by comparing I(X, T) with different 
T. In the case of three dark lines (under white light, i.e., m = 3) propagating 
in same direction observed by Zhu, (33) O(X, T) should be (3~) a monotonic 
decreasing function of X (such as those shown in Fig. 6). 

In order to understand properly the mechanism of soliton generation 
in shearing nematics and to investigate the time evolution of O(X, O) 
experimentally it is important to start with a controlled O(X, 0) (in contrast 
to Ref. 33). This may be achieved with the setup sketched in Fig. 10. The 
inner surfaces of the glass plates G, G1, and G2 are chemically treated as in 
a homeotropic cell (i.e., molecules perpendicular to plates at surfaces). 
Plate G is fixed. The (horizontal) velocities V1 and V2 of G1 and G2, 
respectively, can be varied independently at will. For  example, if V~(t)= Vo 
(=cons t )  and V2(t) = -Vo for t < 0  and V2(t) = Vo for t > 0 ,  we will obtain 
(approximately) a O(X, 0 ) = 0 o  for X<Xo and O(X, 0 ) = - 0 o  for X >  J go 
and a uniform shear s = Void in the region X > X0. The propagation of this 
O(X, 0) into the X >  Xo region and the emerging soliton may by observed 

T 
d 
J_ 

1 

I 
Xo " X 

Fig. 10. Proposed experimental setup in generating solitons. Shown here is the liquid crystal 
cell in which the upper glass plate is split into two (GI and G2) which can be sheared indepen- 
dently. The lower plate G is kept fixed. Crossed polarizers as in Fig. 8 should be included. 
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by transmitted light through crossed polarizers. It is advisable to use while 
light and monochromatic light simultaneously (by letting each one passing 
through half of the cell divided in the middle along the X axis) so that the 
position of the major dark line can be located in the white-light pattern 
while the monochromatic-light pattern provides more detailed information 
about O(X, T). Experimentally, I(X) for fixed T may be obtained through 
photographs of the transmitted light. Alternatively, I(T) for fixed X may be 
measured by placing photocells at different locations along the cell. Dif- 
ferent O(X, 0) can be gnerated by using more complicated Vx(t) and 
V2(t)/32~ 

3. SOLITONS IN UNIFORM UNSTEADY SHEARING NEMATICS 

Let us consider the case of uniform unsteady shear such that s = s(t) in 
(1). For slowly varying shear, s=s(eT), where e is a small parameter. The 
corresponding diminsionless director equation is (2~) 

iglOrv = O x x -  Ov + S(eT) OU/~O (5) 

Here g=s(t)/So; So, the reference constant shear, is chosen such that 
g(0)= 1; M, X, and T differ slightly from those in Section 2 (in which 
So = s). As in Section 2, 2~ is small and practically vanishes. 

The singular perturbation method of multiple scales is applied to this 
problem. The variables (X, T) are replaced by (4, ~b) with ~ - e T  and 
~b = ~b(X, T) such that ~b = X -  C o T when e = 0. Co = const = velocity of 
traveling wave when e = 0. 0 = 0(~, ~b) is expanded in a series, 6 

0 = 00(r 4) + e01(r ~) + ~ ( r  4) + ... (6) 

By eliminating the secular terms one obtains the equations governing 0,.. 
The final result, to order e, is given b y  (21'34) ( C o P  1) 

o(x, T) 
= - t a n  l (wtanh {(1- ?2)l/ZCol IX-Co S s(eT) dT -Xo-ed lCo]} )  

(7) 

where Xo and dl are constants and w = [(1 + 7)/(1 - 7 ) ]  1/2. When e = 0 (7) 
reduces to the Ao soliton with velocity Co of Section 2 [and is given in (4) 
of Ref. 2 with t/-~ Co]. Similar results can be obtained for the Bo soliton 
ca se .  

6 In (6), 0 o is not the constant  0 o in the rest of this paper. 
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Equation (7) describes a soliton with slowly changing velocity C(t )= 
Cog(sT), constant shape (in contrast to the KdV case(3S)), and a phase shift 
proportional to 5. Numerical solutions of (5) are obtained (21) which agree 
with the analytic solution (7). 

Experimentally, in the setup of Fig. 8, the pushing plate in the 
homeotropic MBBA cell has been given a periodic motion by Zhu ~36) with 
frequency 09 is the order of a few hertz. Under white light, three dark lines 
with time-varying velocities are observed. In our opinion, the periodic 
motion of the plate creates a uniform periodic shear profile (in the upper 
and lower parts of the cell shown in Fig. 8) approximately given by 

s(t) = So + sl sin(09t) (8) 

In this case, e = 09r, T =  t/r, ~ _= 27/So. The velocity of the dark line, with 
dimensions, is given by c=C)~/r= Cos(t)y-l(K/21721so) 1/2. This depen- 
dence of c on the material parameters K, 72, and 7 remains valid for the 
steady case of Section 2 (in which S=So or o9 = 0). Note that the time- 
averaged velocity ? = C 0 y  1(soK/2[~21)l/2 is independent of 09. These 
prediction of (i) c~s(t) and (ii) ? independent of o) agree with the 
experimental results. (36) More detailed and precise experiments are needed 
for further checking of our theory. 

A better experimental setup in generating arbitrary time-dependent 
shear is that proposed in Fig. 10. One can easily vary V2(t) periodically or 
in another fashion as one wishes [while keeping Vl( t )= const, say]. 

4, S O L I T O N S  G E N E R A T E D  BY PRESSURE G R A D I E N T S  

To understand more thoroughly the generation mechanism of solitons 
and to find propagating solitons in other circumstances (other than those 
in Sections 2 and 3), experiments on nematic flow due to pressure gradients 
were carried out by Shu, Zhu, and Lin. (37'2~ Pressures, P1 and P2, at two 
small holes near the two ends of a long homeotropic MBBA cell (size of 
each glass plates is 20 x 5 x 0.5 cm) at room temperature (Fig. 11) can be 

l P, 

Fig. 11. Liquid crystal cell used in pressure-gradient experimentsJ 37,2~ Thickness of the cell 
is 36 #m. Crossed polarizers (not shown here) as in Fig. 8 are used. 
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varied at will. Photographs of normally transmitted white and 
monochromatic lights (either separately or simultaneously; see Section 2) 
through crossed polarizers are taken. According to the time variations of 
P1 and P2, three different types of experiments were performed. The main 
results are summarized here. 

4.1. Case A: Generation of One Single Soliton 

The time variations of P1 and P2 are sketched in Fig. 12a. Under white 
light, at stage 1, the background is dark; at stage 2, this dark background 
is replaced gradually until entirely by a while background (no dark lines 
are observed); at stage 3, a single dark line (in contrast to three in Ref. 33) 
propagating from hole 1 to hole 2 is generated; at stage 4, a single dark line 
as in stage 3 is again observed. 

Dark lines of different widths may be generated under the same con- 
ditions of P1 and P2 by using cells of different thicknesses. The velocity of 

P 

I) 3) ?_) 
I 

I 
I 

(a) L 

4) 

(b) 

P I' 
1 

I) 2)  i- - t  

P 
po t) 2) a) 4)  ~ -~ 

(c) l 
Fig. 12. Time variations of pressures PI and P2 (defined in Fig. 11). Cases (a), (b), and (c) 
correspond, respectively, to the three types of experiments (A, B, and C) described in Sec- 
tion 4. In each case, there are four stages denoted by 1), 2), 3), and 4) in the diagram. Broken 
(solid) line represents P1 (P2)- Po is atmospheric pressure. In all cases, PI = P 2  = Po at 
stage 1). In case (a), P2 = P0- In case (c), P1 = P2 (the solid curve). 
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the generated dark line is found to increase with its width (same as in Sec- 
tions 2 and 3). 

4.2. Case B: Collision and Annihilation of Two Solitons 

P1 and P2 vary as in Fig. 12b. The observation at stages 1 and 2 are 
similar to Case A. At stage 3, two dark lines appear near the holes in the 
beginning and move head on toward each other. As they meet at the center 
of the cell, the dark lines disappear altogether. The same process repeats 
itself at stage 4. 

4.3. Case C: Collision and Merging of Two Solitons 

P1 and P2 vary as in Fig. 12c. Phenomena at stages 1 and 2 are similar 
to that in case A or B. At stage 3, two dark lines are generated and move as 
in case B, but when they meet they merge into one dark line instead. Same 
observation at stage 4. 

Theoretical investigation of the above situations is due to Shu and 
Lin. (38) In contrast to Section 2, the shear ~?vx/Oy is no longer constant and 
the problem is two dimensional in the (x, y) plane (y  axis is normal of the 
cell). After appropriate simplifications, the effective dimensionless director 
equation of motion is 

Oxx + 0 ~,y - f(O) Or + g(O) Q Y= 0 (9) 

where Q = OP/gX, P is the (dimensionless) pressure, and f(O) and g(O) are 
nonlinear even functions of 0 depending also on the viscosities. A term 
-MOTr on the right-hand side of (9) is ignored. Boundary conditions are 

j O  

-])/2 
o b/2 "7 

Fig. 13. Steady state solution, 0 = 0(Y), of Eq. (9) for Q > 0. Q is pressure gradient along X 
direction. For Q < 0, 0 ~ -0 .  

822/39/5-6-13 
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0 = 0  at Y= +D/2 (the two cell surfaces). Equation (9) admits the sym- 
metries O(X, - Y ;  Q)= -O(X, Y; Q)= O(X, Y; -Q) .  For Q = const >0,  the 
steady state of (9), O=O(Y), uniform in X is obtained and depicted in 
Fig. 13. Solitary solutions, 0 = O( Y, Z), Z = X - C T ,  of (9) do exist and are 
obtained numerically. One of them is shown in Fig. 14, which is charac- 
terized by the existence of a single Z at which 0 = 0 (for all Y). The 
corresponding //Io vs. X curve for white light has one dark line 
(propagating with velocity C) and is similar to the of the Ao soliton (see 
Fig. 2 of Ref. 2). Estimates of the width and velocity agree with the obser- 
ved values. (37) 

The experimental results of case A above may be understood as 
follows. At stage 1, 0 = 0; at stage 2, Q > 0 and a steady state such as that 
in Fig. 13 is gradually set up; at stage 3, Q < 0 and a soliton like that in 
Fig. 14 is generated which propagates and vanishes at the far end; at 
stage 4, Q > 0 again and a soliton with 0 ~ - 0  in Fig. 14 is generated. The 
orientations of the molecules at each stage in the region Y > 0  (in the 
region Y< 0, change 0 to - 0 )  is sketched in Fig. 15a. 

Experimental results of cases B and C may be similarly explained 
(Figs. 15b abd c). Case B is similar to what depicted in Fig. 5. Note that 
Q = const in cases A and B. In case C, Q = Q(X) and may be approximated 
by the step function of Q =  Qo for X<0 ,  Q = -Qo  for x > 0 ,  where Qo>0  
at stages 2 and 4 and Q0 < 0 at stage 3. 

Similar results may be obtained in the setup of Fig. 10 by adding a 
third plate G~ to the right of G2 (with the base plate suitably extended). 
The director equation of motion in this case is (2) or (4) (when boundary 
effects of glass plates are ignored) and is simpler than (9). 

@ 

,( 

k . / /  

Fig. 14. Numerical soliton solution of Eq. (9 ) ,  0 = O(X- CT, Y). Q = c o n s t  < 0. 
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Fig. 15. Molecular orientations (in Y>0 region) during the four stages of pressure-gradient 
experiments described in Fig. 12. Cases (a), (b), and (c) here correspond, respectively, to (a), 
(b), and (c) of Fig. 12. In the Y< 0 region, change 0 to -0 .  The arrows denote the velocities 
of the solitons (vertical molecules). (a) Single solitons are generated from stage 2) to 3), and 
from 3) to 4) [but not from J) to 2)]. (b) Two solitons are generated, collide, and annihilate 
in 3) [also in 4)]. (c) Two solitons are generated, collide, and merge into one in 3) [and in 
4)]. 

5. AXIALLY S Y M M E T R I C  T W O - D I M E N S I O N A L  SOLITONS 

F o r  nemat ics  p laced  in a cell with c i rcular  discs, in general,(2~ d i rec tor  
angle 0 = O(r, ~o, z, t) where (r, ~o, z) are  cyl indr ical  coord ina tes ,  2 the nor-  
mal  of the cell, 0 the angle  between n and  2. F o r  a thick cell, the z depen-  
dence of  0 can be ignored.  Axial  s y m m e t r y  of  the p r o b l e m  el iminates  the ~o 
dependence.  We then have 0 = O(r, t). F o r  to r s iona l  shear  (in which there is 
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relative rotation of the two disk(39)), v = o)(z) r~b and n in the (~b, 2) plane. 
For radial Poiseuille flow, v = [ v o ( z ) / r ] r  and n in the (P, ~) plane. In both 
cases, for r large, the relevant equation of motion is given by (2~ 

KOrr - 710t + �89 - 72 cos 20) = 0 (lO) 

where ~(r)-Ov/Oz (and M-~0). Note the similarity between (1) and (10). 
The uniform steady state of (10) is + 0o (same as in Section 2), irrespective 
of r. Soliton solutions of (10) do exist. For ~ > 0  (g<0),  0o(-00) is the 
stable state. 

Experimentally, to generate these solitons in the torsional shear case, 
one has to split one of the disks into two parts--a small inner disk (of 
radius ro) and an outer ring--so that these two parts may be rotated 
independently of each other with angular frequencies 091 and co2, respec- 
tively, say. [We then have co(z)=coiz, ~=coir, i =  1, 2, in each region.] 
This setup is similar to that in Fig. 10. The inner disk corresponds to G1, 
the outer ring to G2, ro to X0, co~r to V~. We therefore only have to set 
COl(t) = COo, and CO2(t)= -T-COo for t%0. Under white light (through crossed 
polarizers), a single dark ring or several dark concentric rings [-from more 
complicated c,l(t)],  corresponding to a single soliton or a multisoliton, 
may be observed. In principle, these dark rings (like the dark lines in Sec- 
tion 2) may propagate in both inward and outward directions. Alter- 
natively, for technical considerations, one may fix the outer ring and rotate 
the other (unsplitted) disk instead. 

In the radial Poiseulle flow case, one may apply pressure P1 at the 
center of the disk by feeding nematics continuously into the center and 
letting them flow out of the rim in the fashion of Ref. 40. Alternatively, one 
may seal the outer rim of the disk and allow a ring outlet slightly within 
the rim. Pressure P1 at center and Pa at the ring outlet can then be con- 
trolled at will as in Fig. 11 (in which X corresponds to r). The solitons will 
be observed as dark rings under white light as in the torsional shear case. 

6. D I S C U S S I O N  

1. In the soliton-bearing shearing nematic and related cases discussed 
above, the way to generate the solitons may be briefly summarized as 
follows. For the A soliton (which connects the stable state 0o to the 
unstable state -0o )  one uses a homeotropic cell and first aligns the 
molecules in the (uniform) unstable state. At a fixed point in space (usually 
but not necessarily taken to be near one end of the cell) one then pushes 
the molecules into the stable state locally and like in the "domino," these 
molecules will knock down their neighbors in succession. The travel of an 
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A soliton is the "domino effect" in action. Mathematically, one creates a a 
localized initial state and let the soliton emerges as time evolves. 

The B soliton may be excited similarly by using preferably a planar 
cell (in which molecules at surfaces are parallel to them). There will ne no 
dark lines under white light in this case because nowhere is 0 = 0. However, 
one may add dyes to the nematic so that the horizontally oriented (0 = ~/2) 
nematic molecules will show up distinctively in color. C solitons are also 
excitable but their dimensionless velocity is small and unique (depending 
only on ;;), unlike those of A and B solitons. 

2. The A or B soliton in shearing nematic is an example of 
"propagation into an unstable stateJ 41) In this system the nonlinear 
equation is the physical equation of motion of real objects (in contrast to 
the amplitude equations used in pattern-selection problems(26'4~)). 

These solitons though not linearly stable are nevertheless marginally 
stable (see Section 2). It seems that their existence and importance in other 
real physical systems [e.g., the Josephson junction, an atomic monolayer 
absorbed on a crystal surface, charge density waves, and other systems 
described by (1)] have been overlooked so far. 

As far as nematics are concerned, the experiments discussed in this 
paper are not mant to be used for measuring the material parameters per 
se, although this can be done if one so wishes. Rather, they are intended to 
show and focus one's attention on nonlinear waves in nematics as a subject 
of study. More important, solitons should play a role in the light scattering 
spectrum and phase transition properties of nematics under shear. As a 
system far from equilibrium, shearing nematics is an interesting example 
from both theoretical and experimental points of view. It is a rare case that 
one knows how to generate the solitons precisely in a controlled way and 
to observe them directly and easily. It is especially valuable as a physical 
system in which one can be observe the evolution of waves in action. The 
experiments proposed in Sections 2 4  should be performed. 

3. In the presence of an external magnetic field H = (Hx, Hy, 0), an 
extra term, )&(Hx sin 0 + Hy cos O)(Hx cos 0 -  Hy sin 0), appears on the 
right-hand side of (1). For electric field E, replace H by E and Za by ea. (19) 
When an oscillating external field is used it may be possible to study the 
chaotic behavior of a shearing nematic similar to that in other systems. (42) 
The one important parameter 7 in (1) (and other equations) may be tuned 
by varying the temperature, the nematic material itself, or the external 
(electric or magnetic) field. (19) Note that the various type of solitons in Sec- 
tion 2 no longer exist for 7 > ! (U no longer has local minimal). Boundary 
effects of the cell on the soliton properties has been studiedJ 2~ 

4. One practical aplication of solitons is in the switching mechanism 
of chiral smectic liquid crystals. ~ In Ref. 16, an ad hoc (43) equation of 
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motion of the form (1) has been written down. This equation [(1) of 
Ref. 16], in dimensionless form, is found to be (for E > 0 )  

q~Tr-- q)XX + sin q~ = 7 -- fl(~T (I I ) 

where X=- z/2, T -  t/a, 2 - (OK/EP) 1/2, ~ - (IO/EP) 1/2, 7 =- W/(EPO), 
/ 3 -  7(IOEP) -1/2 (see Ref. 16 for notations). Since (16) I =  p~2= 4pK/EP,  we 
have /3=7(4pK0)  -1/2, independent of E. For 7=0.1P,  p =  1 g/cm 3. K =  
2 x l 0 - 7 d y n ,  0=0.4 ,  O6) one has /3~102. Since ]3>>1, the perturbation 
results of McLaughlin and Scott (44) (for 7<~ 1 a n d / 3 4  1) as adopted in (2) 
of Ref. 16 in invalid. 

To treat the problem properly, let us note that, in analogy to Ref. 45, 
one can show that for (1 t) with 7 < 1 the velocity of a single soliton, in 
laboratory units, is 

u = (2/~) ~/(1 + ~2//32)-1/2 (12) 

where ~/is the diminsionless velocity of the soliton. For the C soliton (the 
one considered in Ref. 45), q = qc(7) and is uniquely determined by y. For 
A or B solitons, external factors in addition to ? are involved but one 
always have 7/< ~/=/3 (see Table I). 

When (12) is applied to the chiral smectic under consideration, 

u = �89 1/2 ~/[-1 + (4pKO/?z)rl 2 ] -1/2 (13) 

One sees that uocE m (a condition presumably required in Ref. 16) if and 
only if ~/is independent of E. Such will be the case if the C soliton is the 
type observed and W is proportional to E (so that 7 is independent of E). 
[Note that, in contrast, W is left completely arbitrary in Ref. 16.] The 
width of the soliton is proportional to 2 and hence to E -1/2. This point 
should be checked experimentally, which will help to identify the C soliton. 

Note  that in (1) of Ref. 16, when the electric field E is reversed in sign, 
one obtains a new equation which is, assuming Wov_E (E < 0), 

e r r -  ~,xx - sin ~b = - 7  -/3~bT (14) 

where E in the definitions of 2, ~, 7, and/3 above should be understood as 
IE]. Equation (14) reduces to (11) under the transformation ~b -~ 7c -~b. A C 
soliton (connecting ~bo to ~bo - 2~, 0 < ~bo =- sin-17 < ~/2) traveling in one 
direction when E >  0 is no longer a C soliton (traveling in the opposite 
direction) for E <  0. If E changes sign very fast, the former will act as initial 
state ~b(X, 0) in the E < 0 case and it will take time for it to develop into the 
latter (connecting z~-~bo to -n -~b0 ) .  This evolving time is equal to the 
product of ~ and a characteric function of 7 and /3. Consequently, it is 
inversely proportional to E. 
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The switching time r is the sum of formation time (ocE -1) and the 
propagation time (ocE -1/2) of the soliton. We therefore have 

z = a E  - m  + b E  -1 (15) 

in place of (3) of Ref. 16. (Note that in Fig. 2 of Ref. 16, the experimental 
dots tend to fall under the straight line at high E.) 
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